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CORONAL MAGNETIC FIELDS
PRODUCED BY PHOTOSPHERIC SHEAR

P.A. Sturrock and W-H. Yang

ABSTRACT

We use the magneto-frictional method for computing

force-free fields to examine the evolution of the magnetic

field of a line dipole, when there is relative shearing

motion between the two polarities. We find that the energy

of the sheared field can be arbitrarily large compared with

the potential field. We- also find that it is possible to

fit the magnetic energy, as a function of shear, by a simple

functional form.

I. INTRODUCTION

Stressed coronal magnetic fields play a key role in

solar activity, providing the energy for solar flares and

possibly for related activity such as surges and coronal

mass ejections. (See, for instance, Priest 1982.) By ,

"stressed," we mean that the coronal magnetic field is not (OWN

current-free so that it is in a higher energy state than the

corresponding magnetic field with the same normal magnetic

field at the photosphere but without coronal currents. It

is therefore important to try to understand the way in which 0

such stressed magnetic-field configurations can develop and

to estimate the "free energy" in such configurations. The

"free energy" is the excess of the magnetic-field energy of '
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the current-carrying field above that of the corresponding

current-free field.

There are several ways in which currents can develop in

coronal magnetic-field configurations. One possibility is

*that a twisted flux tube emerges from below the photosphere.

Another possibility is that two or more distinct flux

systems are adjacent to each other, so that current sheets

develop at the boundaries. The third possibility is that a

field initially in a current-free state is stressed by

photospheric motion. This is the possibility that we

consider in this article.

Unfortunately, we do not yet have systematic data

concerning the horizontal velocity fields of solar active

regions. The new development of "correlation tracking,"

that has been demonstrated on a short span of data acquired

during the Spacelab II mission (Simon et al. 1988), holds

out the promise that such data can be acquired by spacecraft

in the future. Such data would be most valuable in

furthering our understanding of solar activity.

Nevertheless, there is circumstantial information

indicating that horizontal velocity fields do play a

significant role in stressing coronal magnetic fields. For

instance, the occurrence of homologous sequences of flares

indicates that, once a flare has occurred and returned the

magnetic field to something approximating a current-free

state, the field is again stressed so that another flare can

occur, and so on. (See, for instance, Svestka 1976.) The

do V
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similarity of flares in such sequences argues against

attributing the re-stressing of the field to the eruption of

new magnetic flux. It seems more likely that the

progressive re-stressing is to be attributed to a steady

photospheric horizontal velocity field.

It is well known that large solar flares are typically

of the "two-ribbon" type and occur in active regions with

pronounced filaments (Svestka 1976). Filaments occur in the

vicinity of magnetic reversal lines. The structure of

filaments and vector magnetograms both indicate that the

field is highly sheared at the reversal line in such cases.

For these reasons, we are particularly interested in

the coronal magnetic-field configurations that develop above

photospheric regions containing a linear magnetic dipole,

when there is a shear-like displacement on opposite sides of

the dipole. In examining this problem, we assume that the

density and pressure of the coronal gas are sufficiently

small that the magnetic field is unaffected by gravitational

and pressure forces. However, the electrical conductivity

of the coronal gas will still be sufficiently high that the

magnetic field is "frozen" into the coronal plasma. In such

situations, the magnetic field will be force-free, and we

are therefore faced with the problem of calculating force-

free magnetic-field configurations (Priest 1982).

A procedure for calculating such configurations was

developed some time ago by Sturrock and Woodbury (1967), and

one example of such a configuration was calculated at that
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time. We present in this article a series of calculations

which we have made using an improved computational procedure

described in a recent article (Yang, Sturrock and Antiochos

[ VI 1986).

The quantity of greatest interest is the total magnetic

energy in such a sheared magnetic-field configuration. This

will of course be a function of the magnitude of the shear.

We find that the results of our detailed calculations may be

fit by a simple formula that may prove useful in estimating

the amount of energy in similar configurations.

II. FORCE-FREE-FIELD CALCULATIONS

In a recent article, Yang, Sturrock and Antiochos

(1986) have proposed a new method for computing force-free

magnetic-field configurations that they term the "magneto-

frictional method." This procedure has been applied to the

present problem. The magnetic field is expressed in terms

of Clebsch variables

Vcx x (2.1)

.4 where a and 8 are assumed to be of the form

a = c(x,y) , z - y(x,y) . (2.2)

We see that

B=-, B . . B -.+- (D ax a z x Dy ay Dx (2.3)

4,.
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Since a and a are each constant along a field line, it

is clear that the function Y(x,y) shows how each field line

is displaced in the z direction.

In this model, the plane y = 0 is taken to be the

. photosphere, and the z axis is the axis of the line

dipole. Hence the normal component of the photospheric

magnetic field is By(x,0).

We have adopted

2 2c(x,-) exp(- x /Xo ) (2.4)
0

so that

B (x,O) - 2x exp( - x /x ) (2.5)
y 2 0

00

We have also assumed that the region of the photosphere

within the band lxi < X, is subject to shearing motion

- parallel to the z axis but that there is no shearing
-°

motion outside that band. Our specific assumption is that

0.-W i x

y... ( x,O0) = {.sn~!~ i(hS)ix~i (2z. 6)
10 , X >x1

Hence x0  is a measure of the width of the magnetic dipole,

and Z is a measure of the relative shear of the two parts

of the dipole.

04
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In carrying out calculations used in the magneto-

frictional method, it is necessary to introduce a fictitious

outer boundary within which the entire magnetic field is

contained. In our calculations, we adopted a mesh such

that xo = x1 = 4. The outer boundary is formed by the

lines x = + 20 and y = 40. We imposed the condition

= 0 on this boundary, which is equivalent to assuming that

the boundary is "superconducting."

Some of the results of our calculations are shown in

Figure 1. Figure la shows the contours a = constant in the

x-y plane for the current-free case (Z = 0). Figure lb

shows the corresponding contours for the case Z = 10. These

contours are the projections of field lines onto the x-y

plane, and therefore give the "end-on" view of field lines.

Figure lc gives the same contours in the y-z plane, showing

the "side view" of the field lines. Figure id shows the

contours in the x-z plane, representing the "top view" of

the field lines.

We note that, as found earlier by Sturrock and Woodbury

(1967), the effect of the shear displacement is to "inflate"

the magnetic field configuration, since the development of

the Bz  component has the same effect as gas pressure. In

* this context, it is interesting to note that Bz = constant

along each field line (see Appendix A).

In Figure 2, we give the total energy of the magnetic

field as a function of the shearing parameter Z. There is

an important difference between this curve and the

7I
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corresponding curve for the case of cylindrical symmetry

given in Yang, Sturrock and Antiochos (1986). In the case

of cylindrical symmetry, the total energy tends

- -'. asymptotically to the (finite) energy of the open field.

*u Such behavior is not possible in the present geometry, since

.- the energy of the corresponding open-field configuration is

. infinite.

Another important difference between the present model

and both the earlier model of Sturrock and Woodbury (1967)

and the cylindrical case just referred to, is that there is,

in the present model, an outer shell of magnetic flux that

does not suffer shearing displacement. These field lines

therefore tend to restrain the tendency of the inner flux

region to expand into an open configuration. As a result,

the outer boundary has a less severe effect on these

" . calculations than in the previous cases.

III. EMPIRICAL MODEL FOR MAGNETIC ENERGY VARIATION

A single numerical calculation yields an exact answer

to a single question, but an analytical solution shows how

* the quantity of interest depends on the parameters

characterizing the problem. It would be very convenient to

have an understanding of the variation of the total magnetic

* energy as a function of shear and, for this reason, we have

attempted to find a simple functional form that approximates

the form of the curve shown in Figure 2.

If S is a normalized measure of the shear, such as

Z/W, where W is a measure of the width of the bipolar
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region, we expect that the total magnetic energy U can be

expressed as

U = U0  F(S), (3.1)
A-

where U 0  is the total energy of the current-free field

that corresponds to S = 0. Hence F(O) 1. It is also

clear that F must be an even function of S so that it is

expressible as a function of S2

We now consider the asymptotic state of the magnetic

field for very large values of S. As S tends to

infinity, the magnetic field is driven more and more towards

an open configuration. For some very large value of S, we

expect that the field is substantially open as far as a

radius r = KS, but remains substantially dipolar in form

for r > KS. Hence for r < KS, B c r- 1 , whereas for r > KS,

Ba- r-2

One may therefore estimate the dominant contribution to

the magnetic energy by calculating the energy of the

magnetic field as far as r = KS:

14/. KS

* U(S) c r dr . 1. 1 (3.2)

f.. 8I 2

Hence we expect that, for large values of S,
:#

U (s) In S (3.3)

A simple function that has this asymptotic behavior, is

'" an even function of S, and reduces to U0  for S = 0, Is

.,. *.* .
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U(S) U [1 + A ln(l + BS 2 (3.4)
0

In Table 1, we give the calculated values of U for Z

in the range 0 to 16. Adopting S = Z/W and W = 4 (so

that 2Z is the maximum displacement of any field line, and

2W is a measure of the total width of the field

distribution), the values of S are as shown in the table.

We have made a least-squares fit to these data and found

that the best fit is obtained for A = 0.847, B = 0.862.

With these values, the formula (3.4) yields the estimates of

U shown in column 4 of Table 1. The same data are shown in

Figure 2. We see that the average discrepancy between the

estimated and the actual values of the energy is less than

1%. For large values of S, the formula yields values of U

less than those that we have computed. For such large

values of S, the boundary is beginning to affect the

computed magnetic field, and its effect is such that the

computed energy will be higher than the real energy. We are

exploring methods to reduce the influence of the outer

boundary, and it will be interesting to see whether or not

the fit of the above functional form to the data improves.

IV. DISCUSSIO11

We have seen from Section II that relative shearing

motion of the two sides of a line dipole leads to

"inflation" of the magnetic-field pattern and to a

progressive increase in the stored magnetic energy. For
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such a model, the magnetic energy can, in principle, I

arbitrarily large. Hence the free energy of a strr.

magnetic field in an active region may in fact I

considerably larger than the energy of the correcpon'di:v:

potential field. In this respect, the linear d i;:"

cc: nfiguration differs significantly from cylindrical l':

rsymetrical models, such as the one considered by Yari,

2turrock and Antiochos (1986).

We have found, in Section III, that a simple model

provides a good fit to the results of the force-free-field

"calculations. We have also examined a similar--but

lif erent--model computed some time ago by Woodbury and

' 'jnd that the same formula (equation 3.4) gives a good fit

to the data, the mean error being of order 0.1%. We intend

ta examine other models. If it is found that the same

fo rmula is useful for a wide range of models, the problem of

ccrputing stored energy as a function of shear would become

-reatly simplified: it would be sufficient to calculate

- only the current free field and two stressed configurations.

It is interesting also to note from equation (3.4) that

the force opposing the shear varies with Z as follows:

2ABI1 S,'.''. .11 {} (4 .1)

I +B S

so that it varies linearly with Z for small values of Z

and inversely with Z for large values of Z. The maximum

value of F is 2AU 0  at S = B-1 / 2 . Since the normal

1
04
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field By is being held constant at the "photosphere," the

above variation in F must be attributed to a prcqressive

change in the value Bz, the component of field in the

direction of shear: Bz first increases and then decre.ses

with Z.

The fact that the magnetic energy, as a function c'

shear, may be expressed in a simple functional form su;ggest ;

that it may be possible to find a simple approximate

representation of the magnetic field itself.

This work was supported in part by Office of Naval

Research Contract N00014-85-K-0111, by NASA Grant NGL 05-

020-272, and as part of the Solar-A collaboration under NASA

Contract NAS8-37334 with Lockheed Palo Alto Research

Laboratories.

APPENDIX

Demonstration that Bz = const. along a field line.

We see from equation (2.3) that B may be expressed as

%I

B = c' - cx , B) (A. 1)

Hence the current density j may be expressed as

3 B z  B 22( TT 2 (A.2)

4*- y 'ax y
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TABLE 1

Kc74~1rlson of Computed Energy (U) and Best Fit (U')

S U Ul

1.012 1.012
1.062 1.057

0.~01.189 1.178
0.1.354 1.348

1.00 1.535 1.541
1.25 1.900 1.929
1.75 2.075 2.111
2.00 2.243 2.281
2.25 2.404 2.440
250 2.558 2.589

2.75 2.706 2.728
3.00 2.847 2.858
3.25 2.983 2.979
3.50 3.115 3.094
3.75 3.242 3.201
4.00 3.366 3.303

0s
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Figure Captions

Fig. 1 shows various views of the field lines, labeled by

=-. the value of t : (a) projections of field lines on the x-y

plane, giving the "end-on" view, for the current-free case

Z = 0; (b) the same as (a), but for the stressed case

.' Z = 10; (c) projections on the y-z plane, giving the "side-

on" view, for the case Z = 10; and (d) projections on the

x-z plane, giving the "top" view, for the case Z = 10.

Fig. 2. Comparison of the energy of the computed force-free

field (shown as dots) with the energy of the best fit of the

form given by eq. (3.4) (shown as solid line).
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